Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data
نویسندگان
چکیده
Forests are a major component of the global carbon cycle, and accurate estimation of forest carbon stocks and fluxes is important in the context of anthropogenic global change. Airborne laser scanning (ALS) data sets are increasingly recognized as outstanding data sources for high-fidelity mapping of carbon stocks at regional scales.We develop a tree-centric approach to carbon mapping, based on identifying individual tree crowns (ITCs) and species from airborne remote sensing data, from which individual tree carbon stocks are calculated. We identify ITCs from the laser scanning point cloud using a region-growing algorithm and identifying species from airborne hyperspectral data by machine learning. For each detected tree, we predict stem diameter from its height and crown-width estimate. From that point on, we use well-established approaches developed for field-based inventories: above-ground biomasses of trees are estimated using published allometries and summed within plots to estimate carbon density.We show this approach is highly reliable: tests in the Italian Alps demonstrated a close relationship between field- and ALS-based estimates of carbon stocks (r2 = 0·98). Small trees are invisible from the air, and a correction factor is required to accommodate this effect.An advantage of the tree-centric approach over existing area-based methods is that it can produce maps at any scale and is fundamentally based on field-based inventory methods, making it intuitive and transparent. Airborne laser scanning, hyperspectral sensing and computational power are all advancing rapidly, making it increasingly feasible to use ITC approaches for effective mapping of forest carbon density also inside wider carbon mapping programs like REDD++.
منابع مشابه
Mapping Defoliation with Lidar
The aim of this article is to present a concept of using airborne laser scanning (LIDAR), with one scan only, to map defoliation as a forest health variable. The idea is to apply two independent algorithms on the LIDAR data set, to produce both actual and expected leaf area index (LAI) values for every cell in a grid over the area. LAI is estimated based on laser pulse penetration through the c...
متن کاملTree Density and Forest Productivity in a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy
We outline an approach combining airborne laser scanning (ALS) and imaging spectroscopy (IS) to quantify and assess patterns of tree density (TD) and forest productivity (FP) in a protected heterogeneous alpine forest in the Swiss National Park (SNP). We use ALS data and a local maxima (LM) approach to predict TD, as well as IS data (Airborne Prism Experiment—APEX) and an empirical model to est...
متن کاملTowards Automatic Single-sensor Mapping by Multispectral Airborne Laser Scanning
This paper describes the possibilities of the Optech Titan multispectral airborne laser scanner in the fields of mapping and forestry. Investigation was targeted to six land cover classes. Multispectral laser scanner data can be used to distinguish land cover classes of the ground surface, including the roads and separate road surface classes. For forest inventory using point cloud metrics and ...
متن کاملAssessment of Low Density Full-Waveform Airborne Laser Scanning for Individual Tree Detection and Tree Species Classification
The paper investigated the possible gains in using low density (average 1 pulse/m 2 ) full-waveform (FWF) airborne laser scanning (ALS) data for individual tree detection and tree species classification and compared the results to the ones obtained using discrete return laser scanning. The aim is to approach a low-cost, fully ALS-based operative forest inventory method that is capable of provid...
متن کاملMapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches
Southeast Asia is the epicentre of world palm oil production. Plantations in Malaysia have increased 150% in area within the last decade, mostly at the expense of tropical forests. Maps of the aboveground carbon density (ACD) of vegetation generated by remote sensing technologies, such as airborne LiDAR, are vital for quantifying the effects of land use change for greenhouse gas emissions, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016